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Abstract: Reservoir management is a critical component of flood management, and information 23 

on reservoir inflows is particularly essential for reservoir managers to make real-time decisions 24 

given that flood conditions change rapidly. This study’s objective is to build real-time data-25 

driven services that enable managers to rapidly estimate reservoir inflows from available data 26 

and models. We have tested the services using a case study of the Texas flooding events in the 27 

Lower Colorado River Basin in November 2014 and May 2015, which involved a sudden switch 28 

from drought to flooding. We have constructed two prediction models: a statistical model for 29 

flow prediction and a hybrid statistical and physics-based model that estimates errors in the flow 30 
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predictions from a physics-based model. The study demonstrates the statistical flow prediction 1 

model can be automated and provides acceptably accurate short-term forecasts. However, for 2 

longer-term prediction (2 hours or more), the hybrid model fits the observations more closely 3 

than the purely statistical or physics-based prediction models alone. Both the flow and hybrid 4 

prediction models have been published as Web services through Microsoft’s Azure Machine 5 

Learning (AzureML) service and are accessible through a browser-based Web application, 6 

enabling ease of use by both technical and non-technical personnel.  7 

 8 

(Key Terms: flooding; data-driven model services; AzureML; reservoir inflow.) 9 

INTRODUCTION 10 

In this paper we demonstrate a new framework for real-time flood management through data-11 

driven services to rapidly estimate reservoir inflows from available data and models. Physics-12 

based models are widely used in reservoir management: For example, the National Weather 13 

Service (NWS) river forecast centers use physics-based models for daily forecasts. These models 14 

often require extensive manual effort for calibration that can make real-time updates difficult. 15 

Data-driven models, such as statistical or machine learning models, use historical data to rapidly 16 

learn a functional map between concurrent input and output variables. Large and growing 17 

volumes and varieties of data can be retrieved to derive these types of models using data services 18 

from sensors, satellites, and other data sources. Data-driven models can be coupled with physics-19 

based models by fitting a data-driven model to the residual error from the physics-based model, 20 

thereby reducing any persistent bias in the physics-based model (Singh & Woolhiser, 2002). This 21 

paper explores these alternative approaches for real-time flood management and implements the 22 

resulting models as real-time services using the AzureML service. More background for each of 23 

these components is given below.  24 

 25 

Traditional hydrologic models have evolved from lumped conceptual models to physics-based 26 

distributed models where approximations of the partial differential equation or empirical 27 

equations are applied (Abbott et al., 1986b). Models of the physical processes employ 28 

mathematical functions that simulate hydrologic processes and usually involve complex 29 

nonlinear processes with high spatial variability at the basin scale (Singh & Woolhiser, 2011). 30 
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Data sources for physically-based models can be complex and limited, and calibration can be 1 

difficult and time consuming.  2 

Data-driven modelling is an alternative approach that allows rapid construction of complex 3 

models to estimate outcomes based on past experiences and historical events. Data-driven 4 

models analyze relationships between concurrent input and output time series (Solomatine and 5 

Ostfeld, 2008) and can be applied either alone (using a purely statistical model) or in conjunction 6 

with physics-based models, which use mathematical equations derived from the physical 7 

processes (creating a hybrid model). Machine learning methods are a type of statistical approach 8 

that can be fit rapidly and automatically to represent highly complex relationships. The popular 9 

data-driven machine learning methods used in river systems include artificial neural networks 10 

(ANN), fuzzy rule-based systems, and support vector machines (SVM), among others.  11 

Hybrid models often use machine learning approaches to fit error models to the residual errors in 12 

a physics-based forecasting model. Gragne et al. (2015) implemented a filter updating 13 

procedures to update error forecast to improve reservoir inflow forecasts. Gragne et al. (2015) 14 

proposed an error model to improve hourly reservoir inflow forecasts over one day ahead.  15 

 16 

Many applications of ANN focus on rainfall-runoff models (e.g., Sharma et al., 2000, Abrahart et 17 

al., 2007, de Vos and Rientjes, 2007, Nourani et al., 2009). Rainfall is a common input feature 18 

for data-driven models of river systems. Many reservoir inflow prediction studies also rely 19 

mainly on ANN and rainfall data. Coulibaly et al. (2000) first used an ANN to forecast daily 20 

reservoir inflow and a multi-layer feed-forward neural network (FNN) with an early stopped 21 

training approach (STA) to improve prediction accuracy. EI-Shafie et al (2007) used historical 22 

reservoir inflow and ANN to predict monthly reservoir inflows. Bae et al. (2007) implemented 23 

Adaptive Neuro-Fuzzy Inference System (ANFIS) to predict monthly dam inflow using past 24 

observed data and future weather forecasting information. Zhang et al. (2009) implemented 25 

multilayer perceptron artificial neural networks (MLP-ANNs) using observed precipitation and 26 

forecasted precipitation from QPF to predict daily reservoir inflow. Sharma and Chowdhury 27 

(2011) reviewed static and dynamic ensemble methods in probabilistic reservoir system 28 

forecasting models to reduce structural errors. Jothiprakash and Magar (2012) predicted daily 29 

and hourly intermittent rainfall and reservoir inflow using ANN, an adaptive neuro-fuzzy 30 

inference system (ANFIS), and linear genetic programming (GLP). Valipour (2013) compared 31 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved 

autoregressive moving average (ARMA) and autoregressive integrated moving average (ARIMA) 1 

using increasing number of parameters with static and dynamic artificial neural networks. With 2 

historical time series data as input, they demonstrated that static and dynamic autoregressive 3 

ANNs perform best in forecasting monthly reservoir inflow. Kumar et al. (2015) developed an 4 

ensemble model based on neural networks, wavelet analysis, and bootstrap data sampling to 5 

generate a range of forecast instead of point predictions for reservoir inflow.  6 

 7 

These previous studies have focused on non-linear regression models and the predictive 8 

performance is good when compared with other statistical models. Although previous studies 9 

have focused on predicting reservoir inflow from rainfall and historical reservoir inflow data, 10 

they have not incorporated soil moisture as an input feature. Toukourou et al. (2010) showed that 11 

rainfall and soil moisture data are the major relevant variables for reservoir inflow.  12 

 13 

As described above, Artificial Neural Network (ANN) is a commonly used data-driven approach 14 

in hydrology (see also Bowden et al., 2012, Abrahart et al., 2012, Maier et al., 2010), but the 15 

convergence speed is low and training can require significant time that may be a barrier when 16 

near-real-time model updating is required (e.g., Jain et al., 1999, Maier & Dandy, 2000). This 17 

study uses boosted regression trees (BRT) as function approximators. Our early tests showed that 18 

BRT has advantages in faster training and higher accuracy than ANN for this application.  Others 19 

have recently shown that BRT is effective as an ensemble machine learning approach for 20 

hydrology. Erdal and Karakurt (2013) have applied BRT as an ensemble learning method, which 21 

performed well in predicting a monthly streamflow forecast. Snelder et al. (2009) have used BRT 22 

to map the flow regime class by predicting the likelihood of the class of gauge stations based on 23 

watershed characteristics.  BRT has the advantages of regression trees (which are based on 24 

decision trees and built on a process of recursive partition) and boosting methods (creating 25 

ensembles of multiple models that combine fast but weak learners to create a strong leaner). The 26 

approach combines multiple simple trees into an additive regression model to improve predictive 27 

performance (Elith et al. 2008).  28 

 29 

The data-driven models in this study were developed using AzureML Studio Predictive 30 

Analytics, a Cloud-hosted user-friendly software toolkit that allows graphical construction of 31 
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data analysis steps (“workflows”) such as data requests, fitting data-driven models, and data 1 

visualization (AzureML team Microsoft, 2015). The data-driven models built in AzureML 2 

Studio can be published as Web services on the Azure Cloud, providing scalability and high 3 

software availability and reliability, as well as easy integration into modern software systems. 4 

 5 

This study’s purpose is to investigate the feasibility and accuracy of real-time data-driven 6 

services to estimate reservoir inflows from available data. The Texas flooding events in the 7 

Lower Colorado River Basin in November 2014 and May 2015, which involved a sudden switch 8 

from drought to flooding, are used as a case study. The Lower Colorado River Authority 9 

(LCRA), which is responsible for reservoir management in this basin, uses the physics-based 10 

Hydrologic Engineering Center’s Hydrologic Modeling System (HEC-HMS) in the Corps Water 11 

Management System (CWMS). HEC-HMS predicts reservoir inflows from real-time data, 12 

including precipitation, reservoir information, and other hydro-meteorological data.  13 

 14 

Currently LCRA uses a HEC-HMS rainfall-runoff model to predict reservoir inflows that does 15 

not consider soil moisture as an input dataset. The observed streamflow and soil moisture data 16 

are used only to calibrate reservoir inflows manually. Soil moisture may be an important factor 17 

for predicting reservoir inflows (Kang et al., 2015) and a data-driven approach would allow  18 

LCRA reservoir managers to automatically update the reservoir inflows as these conditions 19 

change . In this study, we explore a workflow approach that allows the model set-up process to 20 

be completed only once by a technical analyst and then executed by technical or non-technical 21 

users through a Web browser. A workflow is a collection of tasks that build an automated 22 

pathway for heterogeneous modeling steps.  23 

 24 

The performance of data-driven modeling approaches, including both statistical and hybrid 25 

(coupling statistical and physics-based) models is also assessed using boosted regression tree 26 

modules from AzureML to predict reservoir inflows from real-time and historical precipitation 27 

and soil moisture data. The models can be connected with other data services to obtain the input 28 

data. The system is implemented as Web services on AzureML, which do not require any 29 

software installation and can be rapidly updated as new data are obtained. The data-driven 30 
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services allow users and water managers to automatically fit model parameters, compute data-1 

driven models, and retrieve reservoir inflow information through a Web browser.  2 

METHODOLOGY 3 

Figure 1 shows the general data-driven framework developed in this study to support reservoir 4 

management. The framework consists of two main components: 1) algorithms and tools from 5 

Azure Predictive Analytics toolkit; and 2) Web application. Azure Predictive Analytics 6 

(predictive analytics is a commercial term for machine learning) is a machine learning platform 7 

that allows rapid training of statistical models to describe the relationships between inputs 8 

(“features”) and outputs (“targets”), with execution on remote servers (in the “Cloud”). This first 9 

component comprises data preparation, data preprocessing, and model development. The input 10 

datasets, which include feature datasets and target values, are first uploaded into AzureML 11 

Studio.  12 

 13 

For this study, a wavelet analysis filter method is applied for data preprocessing to reduce data 14 

noise, since noise or errors in the measured datasets may mask important features in the data. 15 

Boosted Regression Tree modules in AzureML are then employed to statistically model the 16 

reservoir inflows using data-driven models. These model execution steps have been constructed 17 

as workflows in AzureML, and flow prediction models and hybrid prediction models have been 18 

implemented as modules in a workflow to predict reservoir inflow. AzureML has significant 19 

advantages in publishing the constructed workflows as Web services. A Web application, which 20 

is Web browser-based software for executing the built models, has been built that enables users 21 

to execute the data-driven model using Web services to predict reservoir inflow (named flowin in 22 

this study).  23 

 24 

Data-driven models use historical data to learn a functional map between input and output 25 

variables that can be used to predict future output variables. Given input datasets that include 26 

input features and output target values from historical data, a mapping can be built to predict 27 

future outputs from known future input features (Mitchell, 1997). For instance, y=f(x) is a 28 

mapping (training model) between input variables x and output variable y. Once the future input 29 

variables �� are available, the future outputs �� can be predicted using the training model. In this 30 

study, we develop two types of data-driven models. The first type is a purely data-driven 31 
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statistical prediction modelthat is used to directly predict reservoir inflows from soil moisture, 1 

precipitation, upstream reservoir outflow, and historical reservoir inflow. The second type of 2 

model is a hybrid prediction model, which corrects the results of physics-based models that 3 

predict reservoir inflows from weather, runoff, and streamflow predictions. The hybrid 4 

prediction model applies the available input features to predict differences between the physics-5 

based model-predicted results and the observed data.  6 

[Insert Fig 1 here] 7 

 8 

Data Preprocessing Using Wavelet Analysis  9 

Wavelet analysis is used to filter the reservoir inflow data into trend and noise parts. This step is 10 

necessary because there are no direct measures of reservoir inflows. Reservoir inflows are 11 

derived from reservoir storage and flowout (the flow out from the reservoir), which are subject to 12 

fluctuations that may be caused by wave action when winds are high during storms or by 13 

measurement errors of the sensors at the gauging stations (Tao, 1998). We use wavelet functions 14 

to decompose the original data into high-pass filter (details) and low-pass filter (trend) 15 

components (Valens, 1999, Polikar, 2001, Okkan, 2012).  16 

 17 

Maximal Overlap Discrete Wavelet Transform (MODWT) is a linear filtering operation that 18 

produces time-dependent wavelets and scaling coefficients (Cornish & Percival, 2005). It 19 

performs better than other methods such as discrete wavelet transform (DWT) in fitting all 20 

sample sizes since DWT requires sample size to be a multiple of 2J

 25 

 where J is the decomposition 21 

level (Cornish & Percival, 2005). In addition, MODWT is independent of the starting point of 22 

the time series, which means that MODWT is not affected by circular shifting of the input time 23 

series (Percival and Walden, 2000).  24 

The wavelet coefficient generated by a high-pass filter is defined as 26 ��,� = ∑ ℎ��,���−���−1�=0  (1) 27 

The wavelet coefficient generated by a low-pass filter is defined as 28 ��,� = ∑ ���,���−���−1�=0  (2) 29 
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where j is the level of decomposition, L is the width of the j=1 base filter, {ℎ��,�} and {���,�}are 1 

wavelet and scaling filters respectively.  2 

 3 

The decomposition process is shown in Figure 2. Take the decomposition level = 3 as an 4 

example.   In each level, the original dataset X is decomposed as trend V and residual error W. In 5 

the first level, X is decomposed as V1 and W1. The level 2 decomposition is based on V1, which 6 

is the trend component from the last level. W1

[Insert Fig 2 here] 11 

 is discarded. The decomposition continues until 7 

the defined decomposition level is reached. The level of filtering selected for the particular case 8 

study (in this case, level 2) is then selected based on best professional judgment of the reservoir 9 

operators. 10 

 12 

Prediction Modeling Using Boosted Regression Tree (BRT) 13 

Data-driven prediction models are computed using a boosted regression tree model, which is an 14 

ensemble model that integrates multiple single regression trees. Regression tree models use 15 

recursive binary splits to predict the target variable (Elith et al., 2008).  Figure 3 demonstrates a 16 

simple regression tree example. A tree model is built by splitting the input datasets into subsets 17 

based on each selected input feature (such as �1, �2, �3, �4, �5). The best partition (e.g., �1 < �1 18 

and �1 ≥ �1) is computed from each derived subset (called recursive partitioning) to maximize 19 

improvement in the model prediction. This process continues until no further splitting improves 20 

the predictions. Boosting is an adaptive method of combining simple models into a single strong 21 

learner to improve model performance. Pseudo code for BRT has been included in the appendix 22 

of the paper. Key features are the ability to fit complex nonlinear models and high accuracy 23 

(Elith et al., 2008, Caruana & Niculescu-Mizil, 2006).  24 

[Insert Fig 3 here] 25 

 26 

Performance Metrics 27 

We use five performance metrics to evaluate the developed models for predicting current and 28 

future reservoir inflows.  29 

a. Mean Absolute Error (MAE) 30 ��� =  
1�∑ |��� − ��|��=1  (3) 31 
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where ��� is the prediction and ��is the true value. MAE averages all of the errors in the 1 

model. When MAE is closer to zero, the model fits better. 2 

b. Root Mean Squared Error (RMSE) 3 ���� =  �1�∑ (��� − ��)2��=1  (4) 4 

where ��� is the prediction and ��is the true value. RMSE is a measurement of the average 5 

of the squares of the errors. RMSE=0 means a perfect fit of the model. 6 

c. Relative Absolute Error (RAE) 7 ��� =
∑ |���−��|��=1∑ |��−��|��=1  (5) 8 

where ��� is the prediction, ��is the true value and �� =
1�∑ ����=1 . RAE measures the 9 

percentage of error over the true value. RAE = 0 if there is a perfect fit.  10 

d. Relative Squared Error (RSE) 11 ��� =
∑ (���−��)2��=1∑ (��−��)2��=1  (6) 12 

where ��� is the prediction, ��is the true value, and �� =
1�∑ ����=1  is the mean true value. 13 

e. Coefficient of Determination (R2

   �2 = (
∑ (���−���)��=1 (��−��)�∑ (���−���)2��=1 ∑ (��−��)2��=1 )2 (7) 15 

) 14 

where ��� is the prediction, ��is the true value,  �� =
1�∑ ����=1  and ��� =

1�∑ �����=1 . R2 16 

measures how close the data are to the fitted regression line. An R2 of 1 indicates a 17 

perfect fit of the regression line, and an R2

 20 

 of 0 indicates that the line does not fit the data 18 

at all.  19 

Web Application 21 

AzureML is a Cloud service for machine learning experiments. The workflows are constructed 22 

as directed acyclic graphs (DAGs) in a Web-based graphical user interface that enables module 23 

operations on datasets (AzureML team Microsoft, 2015). AzureML includes machine learning 24 

libraries from open source languages such as R and Python, in addition to libraries of statistical 25 

methods and other data processing operations. In addition, Azure ML allows connections to 26 

other infrastructure such as database servers to handle large amounts of data.  27 
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 1 

Machine learning models can be manipulated as data workflows by joining modules in AzureML 2 

Studio as shown in Figure 4. Such data workflows, including data preprocessing, model building, 3 

and results visualization, are more natural and intuitive than scripts. Non-technical users can 4 

implement and update the data-driven approach without requiring advanced machine learning 5 

skills or computing expertise (AzureML team Microsoft, 2015). After the complete workflow is 6 

built in AzureML Studio, it can be published as a Web service and shared with other users as a 7 

Web application.  8 

 9 

A Web application builds the connection between client and server to enable Cloud-based Web 10 

services to execute through a simple Web interface. For instance, a modeling Web application 11 

can be built as an automated modeling system (workflow) that includes data access, model 12 

execution and output visualization. Such a system can be published as Web services. A custom 13 

Web User Interface (UI) is then built to allow non-technical users to access the Web services and 14 

view the output directly through the Web browser.  15 

 16 

In AzureML, a python Application Programming Interface (API) is provided to easily access 17 

AzureML Web services. A custom UI allows users to download input data and execute the 18 

prediction models, with the results made available through the UI. Reservoir managers who are 19 

not familiar with machine learning and data-driven approaches and are interested in machine 20 

learning approaches can use the Web application to predict reservoir inflow and compare or 21 

incorporate results from physics-based models. The Web services provide a rapid approach for 22 

reservoir managers to understand near-term impacts of current conditions on reservoir inflow and 23 

provides a proof of concept for a real-time Cloud-based system for reservoir management.  24 

[Insert Fig 4 here] 25 

 26 

CASE STUDY 27 

Lake Travis is in Travis County, located upstream of Lake Austin. Mansfield Dam, operated by 28 

LCRA, creates Lake Travis, which serves to contain floodwaters and helps to manage flooding 29 

downstream. The floodgate release is operated by LCRA under the direction of the U.S. Army 30 

Corps of Engineers. The amount of release depends on weather and flood conditions, such as the 31 
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water level of the reservoir and downstream flow. Understanding the predicted reservoir inflow 1 

during flooding events helps reservoir managers operate the dam more effectively based on such 2 

information and their operating experience (Mateo et al., 2014).  3 

[Insert Fig 5 here] 4 

 5 

Datasets 6 

The case study focuses on Texas flooding events in the Lower Colorado River Basin in 7 

November 2014 and May 2015, using the input and output data given in Figure 6. Precipitation 8 

and soil moisture input data were collected from 31 grid points in Lake Travis Basin in the 9 

upstream of Mansfield Dam, as shown in Figure 5.b. The precipitation becomes direct runoff and 10 

the soil moisture affects surface runoff by reducing infiltration, which physically affects 11 

reservoir inflow. Other input features are the flow out of the upstream reservoir Starcke Dam 12 

(flowout) and the previous flowin to Mansfield Dam, as shown in Figure 5.a. 13 

[Insert Fig 6 here] 14 

 15 

The precipitation data (in kg/m2) were downloaded from Phase 2 of the North American Land 16 

Data Assimilation System (NLDAS-2). NLDAS-2 forcing data are derived from: (1) Doppler 17 

radar data, which are used in national weather forecasts (http://radar.weather.gov/), (2) CPC 18 

MORPHing (CMORPH) Technique, which produces global precipitation data at a high spatial 19 

and temporal resolution 20 

http://www.cpc.ncep.noaa.gov/products/janowiak/cmorph_description.html), and (3) HPD 21 

(Hourly Precipitation Datasets) data (http://www.srh.noaa.gov/ridge2/RFC_Precip/). The data 22 

are in 1/8th degree grid spacing (Rui & Mocko, 2013). The soil moisture data, in units of kg/m2

 27 

, 23 

relied on the Noah land surface model (Noah soil moisture 0-100 cm). Data from both models 24 

can be downloaded via Web application by providing spatial coordinates and specific time 25 

periods.  26 

The reservoir hourly data were collected by LCRA from November 1, 2014, 00:00, to December 28 

3, 2014, 23:00, and from May 1, 2015, 00:00, to June 4, 2015, 23:00, which were the recent time 29 

periods with severe flooding in the Lower Colorado River Basin. These data were retrieved from 30 

the LCRA database for this study. The two flooding datasets were concatenated together. From 31 
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the available datasets, the first 85% (from Nov 1, 2014 00:00 to May 26, 2015 15:00) were 1 

considered as the training dataset to train the model. The remaining 15% (from May 26th 2015 2 

16:00 to June 4th 2015 23:00) were used for testing to evaluate the model predictions. To ensure 3 

that the validation and training datasets were interchangeable, 80% of the training dataset was 4 

designated as training and 20% as validation. The purpose of such splits is to keep the model 5 

fitting completely separate from the validation so that the model is not overfit to this particular 6 

dataset.  7 

 8 

Model Implementation 9 

Wavelet analysis to filter data noise. 10 

Wavelet analysis is intended to smooth the fluctuations in the reservoir inflow data and keep the 11 

trend. The decomposition level (Figure 2) is a key element to choose in wavelet analysis. 12 

Nourani et al. (2008) estimated the optimum decomposition level for DWT using the following 13 

equation: 14 � = ���[���10 (�)] (8) 15 

where L is the decomposition level and N is the number of data values.  16 

 17 

In this study, the number of time series data is 1656. Based on Equation 8, the decomposition 18 

level L = int[log(1656)] = 3. To select the best decomposition level, Figure 7 shows flowin after 19 

each level. At level 1, the dataset still has significant fluctuations and the noise removal is 20 

insufficient. At level 3, the dataset is smooth but the peak flow is significantly truncated. LCRA 21 

staff advised that Figure 7.b, with level 2 noise removal, represents the best data filtering: the 22 

dataset is smooth and the peak is not excessively truncated. Figure 8 shows the original reservoir 23 

inflow versus the filtered reservoir inflow.  24 

[Insert Fig 7 here] 25 

[Insert Fig 8 here] 26 

Correlation. 27 

To assess appropriate time lags for inclusion in the model, cross correlation was performed and 28 

the results are shown in Figure 9. The figure presents the respective correlations between soil 29 

moisture and reservoir inflow, precipitation and reservoir inflow, and flowout from the upstream 30 

reservoir and the downstream reservoir inflow.  31 
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[Insert Fig 9 here] 1 

 2 

Figure 9.a shows that the correlation between soil moisture and reservoir inflow reaches the 3 

highest point at lag=0, indicating that the soil moisture at time t is correlated most strongly with 4 

the reservoir inflow at time t. Figure 9.b demonstrates that the precipitation at time t-1 hour 5 

affects the reservoir inflow most, as the precipitation in the past hour usually has the largest 6 

influence on the reservoir inflow. The flowout of the upstream reservoir (Lake Marble Falls at 7 

Starcke Dam) at time t-2 hours is correlated most strongly with the reservoir inflow, consistent 8 

with LCRA’s assessment that flow typically requires two hours to travel from the upstream 9 

reservoir to the downstream reservoir inflow at Mansfield Dam.  10 

 11 

A flow prediction model to predict reservoir inflow. 12 

To develop the BRT model, different combinations of feature inputs were tested to identify 13 

which combinations of variables are most predictive. The variables used in the best performing 14 

models were those that decreased errors the most.  Although the cross-correlation results 15 

identified the lags corresponding to the strongest correlation, experimentation with different 16 

combinations of time lags is still needed to assure the best performance. Seven experiments were 17 

conducted:  18 

1) soil moisture at time t and precipitation at time t-1 at all 31 grid points, flowout from 19 

upstream reservoir at time t-2, and reservoir inflow at time t-1;  20 

2) soil moisture at time t and precipitation at time t-1 at the grid point that is closest to the 21 

reservoir, flowout from upstream reservoir at time t-2, and reservoir inflow at time t-1;  22 

3) soil moisture at time t-1 and precipitation at time t-1 at the grid point that is closest to the 23 

reservoir, flowout from upstream reservoir at time t-2, and reservoir inflow at time t-1;  24 

4) soil moisture at time t-2 and precipitation at time t-1 at the grid point that is closest to the 25 

reservoir, flowout from upstream reservoir at time t-2, and reservoir inflow at time t-1;  26 

5) soil moisture at time t-3 and precipitation at time t-1 at the grid point that is closest to the 27 

reservoir, flowout from upstream reservoir at time t-2, and reservoir inflow at time t-1;  28 

6) soil moisture at time t, t-1, and t-2 and precipitation at time t-1 at the grid point that is 29 

closest to the reservoir, flowout from upstream reservoir at time t-2, and reservoir inflow 30 

at time t-1; and  31 
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7) soil moisture at time t, t-1, and t-2 and precipitation at time t, t-1, and t-2 at the grid point 1 

that is closest to the reservoir, flowout from upstream reservoir at time t-2, and reservoir 2 

inflow at time t-1 and t-2. 3 

 4 

Since early tests indicated that the precipitation and soil moisture at the closest point to the 5 

reservoir were more predictive of the reservoir inflow, most experiments were conducted using 6 

data from the closest point to the reservoir. 7 

 8 

AzureML facilitates ease of implementation of these alternative models using graphical 9 

workflows, shown in Figure 10, for data manipulation, regression models, training models, score 10 

models and other machine learning-related modules. The boosted regression tree module in 11 

AzureML was used with the following settings: maximum number of leaves per trees = 10, 12 

minimum number of samples per leaf node = 10, and learning rate = 0.1. The sweep parameter 13 

module in AzureML was used to select the number of trees constructed. Users provided a range 14 

of values for the number of trees ([5, 10, 15, 20, 30, 40, 50, 60, 70, 80] in this case) and the 15 

module builds training models for each value and selects the best (20 in this case). The criteria to 16 

choose the best number of trees was based on the MAE of the validation dataset.  17 

Figure 11 shows the structure of one example regression tree in the BRT. The algorithm takes 18 

the entire data set as an input and then splits the dataset at the value of one feature variable 19 

(“node”) that maximizes the “separation” of the dataset. Separation is measured by the variance 20 

reduction, shown in Equation (9), which measures the total reduction in variance of the output 21 

variable due to the split of the node (Timofeev, 2004, Breiman, 1984). Selecting the feature 22 

variable with the largest variance reduction minimizes the model error at each split (Timofeev, 23 

2004). The dataset is then split into two parts based on this value (in Figure 11, the value for the 24 

first split is flowin_lag ≤ 36965 at the root node). Similar splitting continues, as shown in Figure 25 

11, until the stopping criterion (the maximum number of leaves per tree=10 in this case) is met. 26 

Finally, a prediction value of the output is obtained at each leaf node of the tree. For instance, if 27 

the flowin_lag >36965 and smLoc24>357.4, the prediction value is 4469. 28 

 29 ��(�) =
1

|�|2∑ 12 (�� − �0� )2�∈� − (
1

|��|2∑ 12 (�� − �1� )2�∈�� + 
1

 ����2∑ 12 (�� − �2� )2�∈��  (9) 30 
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where S is the original dataset, �� and ��are the split datasets, and �0� , �1� , �2�  represent the 1 

estimate of the average of output label in the respective dataset.  2 

[Insert Fig 10 here] 3 

[Insert Fig 11 here] 4 

 5 

A hybrid prediction model to predict residual error between observed reservoir 6 

inflow and the predicted inflow from physics-based model. 7 

Figure 12 shows the plot of the residual errors, which were calculated as the filtered observed 8 

reservoir inflow minus the predicted reservoir inflow from the HEC-HMS model. HEC-HMS is a 9 

lumped parameter watershed model that simulates watershed response to precipitation and 10 

predicts flows throughout the watershed, including reservoir inflows (Hydrologic Engineering 11 

Center, 2011). Based on the flow information, LCRA staff simulate reservoir operation using the 12 

HEC Reservoir System Simulation (HEC-ResSim) in CWMS, assess the impacts of the 13 

operations using HEC Flood Impact Analysis (HEC-FIA), and make decisions for reservoir 14 

management (e.g., determine reservoir releases to meet reservoir and downstream operational 15 

goals). The same input features as the above flow prediction model were applied here. The seven 16 

experiments described above were repeated for the hybrid model, with the best-performing 17 

experiment selected.   18 

[Insert Fig 12 here] 19 

 20 

RESULTS 21 

Physics-based Model Performance 22 

Figure 13 shows the predicted reservoir inflow from the physics-based model HEC-HMS in 23 

CWMS and Table 1 shows the performance metrics for the physics-based model. The results 24 

show that the physics-based model fits the general trend of the reservoir inflows but a residual 25 

error remains that can be fit with the hybrid model.  26 

 27 

[Insert Fig 13 here] 28 

[Insert Table 1 here] 29 

 30 

Data-Driven Flow Prediction Model 31 
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Table 2 shows the performance of the data-driven flow prediction model for the seven 1 

experiments. Experiment #4 (soil moisture at time t-2 at the reservoir-located grid point, 2 

precipitation at time t-1 at the reservoir-located grid point, flowout at time t-2, and flowin at time 3 

t-1) demonstrates the best performance metrics. We can see that the flow prediction, shown in 4 

Figure 14, is close to the real reservoir inflow, with the prediction capturing both the general 5 

trend of the reservoir inflow and closely matching the peak values.  6 

 7 

A comparison of experiment #1 and experiment #2 shows that the closest soil moisture estimate 8 

(experiment #2) is more effective than all 31 available estimates in the area (experiment #1), 9 

indicating that some input features are not improving predictions of reservoir inflow. 10 

Experiments #2 through #5 demonstrate that a time lag of 2 hours for soil moisture input 11 

(experiment #4) is the best option, despite the correlation results showing a time lag of zero 12 

having maximum correlation. Experiment #7 has similar performance to that of experiment #6, 13 

possibly because the additional input variables in experiment #7 (precipitation at time t-2 and 14 

reservoir inflow at time t-2) provide trivial information to improve the prediction performance.   15 

 16 

We also conduct experiments to predict reservoir inflow 1 to 9 hours ahead using the same input 17 

variables in Tables 2 and 3. Figure 15 shows the RMSE of future predictions from the data-18 

driven flow prediction model. After 1 hour, the RMSE increases sharply, then fluctuates, 19 

indicating that while the flow prediction model can be used to predict reservoir inflow one hour 20 

ahead, later performance drops off significantly.  21 

[Insert Table 2 here] 22 

[Insert Fig 14 here] 23 

[Insert Fig 15 here] 24 

 25 

Hybrid Prediction Model  26 

The hybrid prediction model is used to predict the residual error [residual(t)] between observed 27 

flowin and predicted reservoir inflow from the physics-based model, shown in Figure 12. The 28 

predicted reservoir inflow is then calculated using the predicted residual error plus the predicted 29 

reservoir inflow from the physics-based model. Table 3 summarizes the performance of the 30 

hybrid model for each of the seven experiments, using the same input variables as for the flow 31 
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prediction model. The best performance comes from experiment #2, followed by that of 1 

experiment #6. Since the hybrid model is intended to rapidly enhance the physics-based model’s 2 

performance, it makes sense that the model including soil moisture has the best performance 3 

since CWMS does not consider soil moisture as an input (Hydrologic Engineering Center, 2011). 4 

Figure 16 shows the performance of the physics-based model, the hybrid prediction model, and 5 

the observed flowin for Experiment #2. The hybrid prediction model improves upon the 6 

performance of the physics-based model in terms of the peak value prediction, but does not 7 

perform as well as the data-driven model in the short term (Figure 14).  8 

 9 

Figure 17 shows the future prediction performance of the hybrid model. Within four hours, the 10 

RMSE curve fluctuates under 170 m3

[Insert Table 3 here] 13 

/s. However, after four hours, the model’s performance 11 

begins to drop off.  12 

[Insert Fig 16 here] 14 

[Insert Fig 17 here] 15 

 16 

Web Interface 17 

In AzureML, the built workflows were published as Web services using “Set Up Web Service” 18 

function. The Uniform Resource Locator (URL) and Application Programming Interface (API) 19 

Web Service keys were generated. The resulting data-driven services allow users and water 20 

managers to automatically fit model parameters, compute data-driven models, and retrieve 21 

reservoir inflow information through a Web browser. A Web application was built that enables 22 

users to give input parameters and retrieve output (Figure 18). Figure 18.a shows the user 23 

interface. The models can be executed in AzureML by filling the input parameter boxes and 24 

selecting the “Compute” button; the result (the value of the predicted reservoir inflow) is 25 

retrieved and shown in the Web interface. The input parameters include the “StartTime” and 26 

“EndTime,” which will automatically download precipitation and soil moisture from NLDAS2, 27 

as well as flowout (which is the flow exiting the upstream reservoir) and flowin_lag (which is the 28 

reservoir inflow in the previous time step). 29 

 30 
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Figure 18.b shows a prototype Web application that allows users to see the reservoir inflow 1 

prediction based on the prediction models. Users can provide a prediction starting time and a 2 

future prediction steps to examine how predictions compare with the measured data in the recent 3 

past, which will provide a sense for potential errors in the predicted reservoir inflows. In the 4 

future, when predicted soil moisture, precipitation and upstream reservoir flowout are available, 5 

such data can be incorporated into the prediction model to improve performance.  6 

 7 

Furthermore, the Web application can be extended to other river basins.  For instance, for any 8 

ungauged basin, users only need to upload the longitude and latitude of grid points affecting 9 

reservoir inflow to Azure ML. These points are then used to automatically download 10 

corresponding precipitation and soil moisture data from NLDAS2 using our workflow in 11 

AzureML. Then users can predict reservoir inflows based on the start time, end time, flowin_lag, 12 

and flow_out, as shown in Figure 18.a. Using this interface, the Web application provides an 13 

easy way for reservoir operators to forecast reservoir inflows and explore multiple scenarios 14 

without modeling or computational expertise. 15 

[Insert Fig 18 here] 16 

 17 

DISCUSSION AND CONCLUSIONS 18 

In this study, we propose a data-driven framework for real-time reservoir inflow prediction using 19 

a service-oriented approach that enables ease of access through a Web browser. Statistical and 20 

hybrid models are developed to predict flow and residual errors from a physics-based model, 21 

respectively. We created a workflow in Microsoft AzureML, a machine learning studio, for end-22 

to-end downloading of the data, executing the models, and visualizing the results. Azure ML 23 

provides fast and easy implementation of the whole workflow as well as publishing of the 24 

workflow as Web services. In addition, the input datasets and workflow can be updated when 25 

new data are available. One of the workflows that predicts reservoir inflow has been published 26 

at https://gallery.cortanaintelligence.com/Experiment/Predict-Reservoir-Inflow-1. Users who 27 

wants to use AzureML to predict reservoir inflow can update the input data and the model will 28 

be automatically updated without manual calibration or tuning of model parameters. 29 

 30 
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The framework was implemented and tested in the Lower Colorado River Basin. The results 1 

show that the statistical flow prediction model is more accurate for short-term forecasts than the 2 

hybrid prediction model, while the hybrid model performs better for longer-term prediction (2 3 

hours or more), as it considers forecasts from a physics-based model.   4 

 5 

The flow prediction model has a peak prediction value close to the actual value. Of the set of 6 

experiments shown in Table 2, experiment #4 has the best performance. Using soil moisture at 7 

time t-2 at the reservoir-located grid point, precipitation at time t-1 at the reservoir-located grid 8 

point, flowout at time t-2, and flowin at time t-1 will lead to the best prediction of flowin at time t.   9 

 10 

From a physical process perspective, soil moisture affects surface runoff by reducing infiltration. 11 

When flooding happens, infiltration has reached a saturated level. Therefore, high soil moisture 12 

conditions are indicative of wet conditions that are well correlated with high reservoir inflows 13 

and are thus useful for prediction.   14 

 15 

The hybrid prediction model improves upon the performance of the physics-based model. Based 16 

on the set of experiments shown in Table 3, experiment 2 gives the best performance. Using soil 17 

moisture at time t at the reservoir-located grid point, precipitation at time t-1 at the reservoir-18 

located grid point, flowout at time t-2, and flowin at time t-1 will lead to the best prediction in 19 

flowin at time t. The hybrid model’s short-term performance is worse than that of the flowin 20 

prediction model. The hybrid model is affected by complex processes, as shown by the high 21 

fluctuations in Figure 12, and available data to build the model are limited to just two flooding 22 

events. With more flooding events available in the future, the incorporation of more data will  23 

likely improve the model’s performance.   24 

 25 

In considering longer-term predictions, the hybrid prediction model is better than the data-driven 26 

flow prediction model in terms of RMSE (Figure 19). The flow prediction model’s RMSE is 27 

lower than that of the hybrid prediction model one hour ahead. Later, the flow prediction 28 

model’s RMSE is higher than that of the hybrid prediction model, indicating that the flow 29 

prediction model’s performance declines after two hours. Because the hybrid prediction model’s 30 

performance remains reasonably high within the following five hours, in the future the Web 31 
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application could allow the user to create a combined prediction model that uses the data-driven 1 

model for the first two hours and the hybrid prediction model for time steps further in the future.  2 

 3 

Further research is needed to explore how these findings generalize to other locations and storms. 4 

The models and tools developed in this work can be generalized to other reservoirs by updating 5 

the input data in the workflow. The workflow can also be combined with other modeling services 6 

requesting the Web service using URL and API keys, as mentioned previously.  7 

[Insert Fig 19 here] 8 

 9 

In the future, the hybrid prediction model for long-term prediction will need to be improved. 10 

Currently the only available CWMS forecasts from the LCRA database were nowcasts (forecasts 11 

for the current time period only). If longer-term CWMS predictions could be obtained, then the 12 

hybrid model might perform better for longer-term forecasts.  13 

 14 

In addition, the current Web application is a prototype and further user-centered design and 15 

development is necessary before the system should be adopted for operational reservoir 16 

management. Feedback from LCRA’s testing and evaluation of the Web application can be used 17 

to improve the interface and add more features as needed to support effective decision making.   18 

Moreover, when more flooding data are available, the data-driven and hybrid models can readily 19 

be updated and improved using the AzureML framework. Replacing historical data for soil 20 

moisture, precipitation, and upstream reservoir flowout with model predictions might improve 21 

reservoir inflow prediction in later time periods. For instance, the precipitation might be replaced 22 

by the Quantitate Precipitation Forecast (QPF) or local LCRA rain gauge data.  In the future, 23 

other data preprocessing approaches such as partial information approach [Sharma & Mehroma, 24 

2014, Sharama, et al., 2016] could also be implemented to automatically choose the best input 25 

parameters for data-driven models to improve reservoir inflow forecast.  26 

 27 

The findings clearly indicate promise for this type of approach and potential value in making 28 

datasets and model forecasts more readily available in real time to support such analyses. In 29 

addition to reservoir inflow forecasting, the framework can be extended to other water resources 30 

applications with rich data sets using the AzureML framework. 31 
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 1 

APPENDIX 2 

Algorithm (Friedman 2001, Hastie & Friedman, 2008) 3 

Input: training dataset {(�� ,��)}�=1�  where �� represents input datasets (‘features’) and �� 4 

represents output dataset (‘targets’), number of iterations. 5 

Algorithm: 6 

1. Initialize model with a constant value 7 

�0(�) = ��������(�� ,�(��))

�
�=1  

2. For each iteration: 8 

a. Compute pseudo-residuals: 9 ��� = −���(��,�(��)��(��) � for i = 1,…, n 10 

b. Fit a decision tree learner ��(�) to pseudo-residuals using the training dataset. 11 

c. Add ��(�) to the model ��(�) = ��−1(�) + ���(�) , where � is called step-size or 12 

shrinkage. In this study, it was set to 0.1 to prevent overfitting by not doing a full 13 

optimization in each step.  14 

3. Output ��(�) 15 

 16 
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 7 

TABLES 8 

TABLE 1. Performance Metrics of Physics-based Model  9 

Mean 

Absolute 

Error (m3

Root Mean 

Squared Error 

(m/s)  3

Relative 

Absolute 

Error  /s)  

Relative 

Squared Error  

Coefficient of 

Determination 

67.677 130.541 0.381 0.282 0.718 

 10 

TABLE 2. Performance Metrics for Flow Predicted Model  11 

  Input Variables 
Output 

Variable 

Performance 

Mean 

Absolute 

Error(m3

Root Mean 

Squared 

Error(m/s) 3

Relative 

Absolute 

Error /s) 

Relative 

Squared 

Error 

Coefficient of 

Determination 

1 
SM(t)31, Precip(t-1)31

flowin(t) 
, 

flowout(t-2), flowin_lag(t-1) 
28.883 60.032 0.167 0.061 0.939 

2 
SM(t)closest, Precip(t-1)closest

flowin(t) 
,  

flowout(t-2), flowin_lag(t-1) 
28.600 66.545 0.165 0.075 0.925 

3 
SM(t-1)closest, Precip(t-1)closest

flowin(t) 
,  

flowout(t-2), flowin_lag(t-1) 
26.873 48.705 0.155 0.040 0.960 

4 
SM(t-2)closest, Precip(t-1)closest

flowin(t) 
,  

flowout(t-2), flowin_lag(t-1) 
23.984 46.723 0.139 0.037 0.963 

5 
SM(t-3)closest, Precip(t-1)closest

flowin(t) 
,  

flowout(t-2), flowin_lag(t-1) 
27.269 50.404 0.157 0.043 0.957 

6 

SM(t)closest, SM(t-1)closest, 

SM(t-2)closest, Precip(t-1)closest flowin(t) ,  

flowout(t-2), flowin_lag(t-1) 

24.607 50.121 0.142 0.042 0.958 

7 

SM(t)closest,SM(t-1)closest,SM(t-

2)closest,Precip(t)closest,Precip(t-

1)closest, Precip(t-2)closest

flowin(t) 

,  

27.666 52.953 0.160 0.048 0.953 
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flowout(t-2), flowin_lag(t-1), 

flowin_lag(t-2) 

 1 

 2 

TABLE 3. Performance Metrics for Hybrid Prediction Model 3 

  Input Variables 
Output 

Variable 

Performance 

Mean 

Absolute 

Error 

(m3

Root 

Mean 

Squared 

Error 

(m
/s) 

3

Relative 

Absolute 

Error 

/s) 

Relative 

Squared 

Error 

Coefficient of 

Determination 

1 
SM(t)31, Precip(t-1)31

residual(t) 
, flowout(t-

2), flowin_lag(t-1) 
81.836 167.636 0.472 0.475 0.525 

2 
SM(t)closest, Precip(t-1)closest

residual(t) 
,  

flowout(t-2), flowin_lag(t-1) 
57.200 97.976 0.331 0.163 0.838 

3 
SM(t-1)closest, Precip(t-1)closest

residual(t) 
,  

flowout(t-2), flowin_lag(t-1) 
71.925 121.196 0.415 0.249 0.751 

4 
SM(t-2)closest, Precip(t-1)closest

residual(t) 
,  

flowout(t-2), flowin_lag(t-1) 
80.986 146.398 0.467 0.362 0.638 

5 
SM(t-3)closest, Precip(t-1)closest

residual(t) 
,  

flowout(t-2), flowin_lag(t-1) 
69.943 138.186 0.404 0.322 0.678 

6 

SM(t)closest, SM(t-1)closest, SM(t-

2)closest, Precip(t-1)closest residual(t) ,  

flowout(t-2), flowin_lag(t-1) 

69.659 108.170 0.403 0.197 0.803 

7 

SM(t)closest, SM(t-1)closest, SM(t-

2)closest,Precip(t)closest,Precip(t-

1)closest, Precip(t-2)closest residual(t) ,  

flowout(t-2), flowin_lag(t-1), 

flowin_lag(t-2) 

68.527 112.984 0.396 0.216 0.784 

 4 
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Figure 5.a Map of Lake Travis Basin	

	

Figure 5.b Grid Points in Lake Travis Basin	
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Figure 7.a. Reservoir Inflow at Level 1	

	

Figure 7.b. Reservoir Inflow at Level 2	

	

Figure 7.c. Reservoir Inflow at Level 3	
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FIGURE 9.a. Correlation between Soil Moisture and 
Flowin	

FIGURE 9.b. Correlation between Precipitation and 
Flowin	

	

	

FIGURE 9.c. Correlation between Flowout of Upstream 
Reservoir and Flowin	
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FIGURE 18.a. Flow Prediction Model to 

Calculate Reservoir Inflow	

FIGURE 18.b. Reservoir Inflow Prediction     	
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